SLV_2016_ES_v01_M
Enterprise Survey 2016
Name | Country code |
---|---|
El Salvador | SLV |
Enterprise Survey [en/oth]
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving business environments as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
An Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. Firm-level surveys have been conducted since 1998 by different units within the World Bank. Since 2005-2006, most data collection efforts have been centralized within the Enterprise Analysis Unit. The Enterprise Surveys are conducted across all geographic regions and cover small, medium, and large companies. The surveys are administered to a representative sample of firms in the non-agricultural formal private economy. Data are used to create indicators that benchmark the quality of the business and investment climate across countries.
Sample survey data [ssd]
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
v01, edited, anonymous dataset for public distribution
All variables are named using, first, the letter of each section and, second, the number of the variable within the section, i.e. a1 denotes section A, question 1 (some exceptions apply due to comparability reasons). Variable names preceded by the prefix "LAC" indicate questions specific to El Salvador and other countries in LAC 2016, therefore, they may not be found in the implementation of the rollout in other countries. All other suffixed variables are global and are present in all country surveys over the world. All variables are numeric with the exception of those variables with an "x" at the end of their names. The suffix "x" denotes that the variable is alpha-numeric.
The scope of the study includes:
National
Regions covered are selected based on the number of establishments, contribution to employment, and value added. In most cases these regions are metropolitan areas and reflect the largest centers of economic activity in a country.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors.
Name |
---|
World Bank |
Name |
---|
World Bank |
Inter-American Development Bank |
Three levels of stratification were used in this country: industry, establishment size, and region.
Industry stratification was designed in the way that follows: the universe was stratified into four manufacturing industries and two services industries- Food and Beverages (ISIC Rev. 3.1 code 15), Textiles and Garments (ISIC codes 17 and 18), Furniture (ISIC code 36), Other Manufacturing (ISIC codes 16, 19-35, 37), Retail (ISIC code 52) and Other Services (ISIC codes 45, 50, 51, 55, 60-64, and 72).
Size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Regional stratification for the El Salvador ES was done across four regions: the San Salvador Metropolitan Area, Greater San Salvador (municipalities of Sensuntepeque, Cojutepeque, Ciudad Arce, Colon, La Libertad, Quezaltepeque, San Juan Opico, Olocuilta, Zacatecoluca, Santo Tomas, and San Vicente), West (Ahuachapan, Chalchuapa, Metapan, Santa Ana, and Sonsonate) and East (La Union, Santa Rosa de Lima, San Francisco Gotera, San Miguel, and Usulutan).
The sample frame consisted of listings of firms from two sources: The panel firms list of 360 firms from the El Salvador 2010 ES was used. For fresh firms (i.e., firms not covered in 2010), firm data from Dirección General de Estadística y Censos (DIGESTYC) was used.
The quality of the frame was assessed at the onset of the project through visits to a random subset of firms and local contractor knowledge. The sample frame was not immune from the typical problems found in establishment surveys: positive rates of non-eligibility, repetition, non-existent units, etc. In addition, the sample frame contains no telephone/fax numbers so the local contractor had to screen the contacts by visiting them. Due to response rate and ineligibility issues, additional sample had to be extracted by the World Bank in order to obtain enough eligible contacts and meet the sample targets.
Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 24.9% (349 out of 1399 establishments).
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies:
a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9).
b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
The number of interviews per contacted establishments was 0.52. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 0.37.
Three sets of assumptions on establishment eligibility are used to construct sample adjustments using the status code information.
Strict assumption: eligible establishments are only those for which it was possible to directly determine eligibility. The resulting weights are included in the variable wstrict.
Median assumption: eligible establishments are those for which it was possible to directly determine eligibility and those that rejected the screener questionnaire or an answering machine or fax was the only response. The resulting weights are included in the variable wmedian.
Weak assumption: in addition to the establishments included in points a and b, all establishments for which it was not possible to contact or that refused the screening questionnaire are assumed eligible. This definition includes as eligible establishments with dead or out of service phone lines, establishments that never answered the phone, and establishments with incorrect addresses for which it was impossible to find a new address. Under the weak assumption only observed non-eligible units are excluded from universe projections. The resulting weights are included in the variable wweak.
The structure of the data base reflects the fact that two different versions of the survey instrument were used for all registered establishments. Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions.
The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions).
Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).
Each variation of the questionnaire is identified by the index variable, a0.
Start | End |
---|---|
2016-03 | 2016-08 |
Name |
---|
Fusades |
Private contractors conduct the Enterprise Surveys on behalf of the World Bank. Due to sensitive survey questions addressing business-government relations and corruption-related topics, private contractors are preferred over any government agency or an organization/institution associated with government, and are hired by the World Bank to collect the data.
The surveys are usually implemented following a two-stage procedure. In the first stage, a screener questionnaire is applied over the phone to determine eligibility and to make appointments; in the second stage, a face-to-face interview takes place with the Manager/Owner/Director of each establishment. Sometimes the survey respondent calls company accountants and human resource managers into the interview to answer questions in the sales and labor sections of the survey.
All Enterprise Surveys are conducted in the local languages.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Enterprise Surveys
https://www.enterprisesurveys.org/Portal/
Cost: None
Name | Affiliation |
---|---|
Joshua Wimpey | World Bank |
Is signing of a confidentiality declaration required? | Confidentiality declaration text |
---|---|
yes | Confidentiality of the survey respondents and the sensitive information they provide is necessary to ensure the greatest degree of survey participation, integrity and confidence in the quality of the data. Surveys are usually carried out in cooperation with business organizations and government agencies promoting job creation and economic growth, but confidentiality is never compromised. |
The use of this dataset must be acknowledged using a citation which would include:
Example:
The World Bank. El Salvador Enterprise Survey (ES) 2016, Ref. SLV_2016_ES_v01_M. Dataset downloaded from [URL] on [date].
The user of the data acknowledges that the original collector of the data, the authorized distributor of the data, and the relevant funding agency bear no responsibility for use of the data or for interpretations or inferences based upon such uses.
Name | |
---|---|
Enterprise Analysis Unit | enterprisesurveys@worldbank.org |
DDI_SLV_2016_ES_v01_M_WB
Name | Affiliation | Role |
---|---|---|
Development Data Group | World Bank | DDI documentation |
2017-04-19
Version 01 (April 2017)
This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.