The World Bank Working for a World Free of Poverty Microdata Library
  • Data Catalog
  • About
  • Collections
  • Citations
  • Terms of use
  • Login
    Login
    Home / Central Data Catalog / LSMS / ETH_2021_ESPS-W5_V02_M / variable [F53]
lsms

Socio-Economic Panel Survey 2021-2022
Wave 5

Ethiopia, 2021 - 2022
Get Microdata
Reference ID
ETH_2021_ESPS-W5_v02_M
Producer(s)
Ethiopian Statistical Service (ESS)
Collection(s)
Living Standards Measurement Study (LSMS)
Metadata
Documentation in PDF DDI/XML JSON
Created on
Jan 25, 2024
Last modified
Sep 29, 2025
Page views
235798
Downloads
31667
  • Study Description
  • Data Description
  • Documentation
  • Get Microdata
  • Data files
  • sect_cover_hh_w5.dta
  • sect1_hh_w5.dta
  • sect2_hh_w5.dta
  • sect3_hh_w5.dta
  • sect3b_hh_w5.dta
  • sect4_hh_w5.dta
  • sect5a_hh_w5.dta
  • sect5b_hh_w5.dta
  • sect6a_hh_w5.dta
  • sect6b2_hh_w5.dta
  • sect6b3_hh_w5.dta
  • sect6b4_hh_w5.dta
  • sect6c_hh_w5.dta
  • sect7a_hh_w5.dta
  • sect7b_hh_w5.dta
  • sect8_hh_w5.dta
  • sect9_hh_w5.dta
  • sect10a_hh_w5.dta
  • sect11_hh_w5.dta
  • sect12a_hh_w5.dta
  • sect12b1_hh_w5.dta
  • sect12b2_hh_w5.dta
  • sect12c_hh_w5.dta
  • sect12c_q1_hh_w5.dta
  • sect12d_hh_w5.dta
  • sect12e_hh_w5.dta
  • sect12f_hh_w5.dta
  • sect13_hh_w5.dta
  • sect14_hh_w5.dta
  • sect15a_hh_w5.dta
  • sect15b_hh_w5.dta
  • sect01a_com_w5.dta
  • sect01b_com_w5.dta
  • sect02_com_w5.dta
  • sect03_com_w5.dta
  • sect04_com_w5.dta
  • sect05_com_w5.dta
  • sect06_com_w5.dta
  • sect07_com_w5.dta
  • sect08_com_w5.dta
  • sect09_com_w5.dta
  • sect10a_com_w5.dta
  • sect10b_com_w5.dta
  • sect11_com_w5.dta
  • sect12_com_w5.dta
  • sect_cover_pp_w5.dta
  • sect1_pp_w5.dta
  • sect2_pp_w5.dta
  • sect3_pp_w5.dta
  • sect4_pp_w5.dta
  • sect5_pp_w5.dta
  • sect7_pp_w5.dta
  • sect9a_pp_w5.dta
  • sect_cover_ph_w5.dta
  • sect1_ph_w5.dta
  • sect9_ph_w5.dta
  • sect10_ph_w5.dta
  • sect11_ph_w5.dta
  • sect_cover_ls_w5.dta
  • sect8_1_ls_w5.dta
  • sect8_2_ls_w5.dta
  • sect8_3_ls_w5.dta
  • sect8_4_ls_w5.dta
  • eth_householdgeovariables_y5.dta
  • eth_plotgeovariables_y5.dta
  • cons_agg_w5.dta
  • crop_cf_wave5.dta
  • food_cf_wave5.dta

1b.CROP CODE (s4q01b)

Data file: sect9a_pp_w5.dta

Overview

Valid: 14239
Invalid: -
Minimum: 1
Maximum: 123
Type: Discrete
Decimal: 0
Start: 126
End: 128
Width: 3
Range: 1 - 123
Format: Numeric

Questions and instructions

Categories
Value Category Cases
1 1. 1.BARLEY 328
2.3%
2 2. 2.MAIZE 1943
13.6%
3 3. 3.MILLET 105
0.7%
4 4. 4.OATS 12
0.1%
5 5. 5.RICE 64
0.4%
6 6. 6.SORGHUM 918
6.4%
7 7. 7.TEFF 835
5.9%
8 8. 8.WHEAT 397
2.8%
9 9. 9.Mung Bean or MASHO 10
0.1%
10 10. 10.CASSAVA 83
0.6%
11 11. 11.CHICKPEAS 81
0.6%
12 12. 12.HARICOTBEANS 150
1.1%
13 13. 13.HORSE BEANS 305
2.1%
14 14. 14.LENTILS 28
0.2%
15 15. 15.FIELDPEAS 137
1%
16 16. 16.VETCH 84
0.6%
17 17. 17.GIBTO 1
0%
18 18. 18.SOYA BEANS 58
0.4%
19 19. 19.REDKIDENY BEANS 316
2.2%
20 20. 20.FENNEL 11
0.1%
21 21. 21.CASTOR BEANS 0
0%
22 22. 22.COTTON SEED 0
0%
23 23. 23.LINESEED 28
0.2%
24 24. 24.GROUND NUTS 112
0.8%
25 25. 25.NUEG or NIGERSEED 66
0.5%
26 26. 26.RAPESEED 30
0.2%
27 27. 27.SESAME 38
0.3%
28 28. 28.SUNFLOWER 3
0%
30 30. 30.SAVORY or ROSEMARY 0
0%
31 31. 31.BLACKCUMIN 11
0.1%
32 32. 32.BLACKPEPPER 13
0.1%
33 33. 33.CARDAMON 24
0.2%
34 34. 34.CHILIES 56
0.4%
35 35. 35.CINNAMON 0
0%
36 36. 36.FENUGREEK 30
0.2%
37 37. 37.GINGER 25
0.2%
38 38. 38.REDPEPPER 153
1.1%
39 39. 39.TUMERIC 13
0.1%
40 40. 40.WHITECUMIN 5
0%
41 41. 41.APPLES 14
0.1%
42 42. 42.BANANAS 787
5.5%
43 43. 43.GRAPES 0
0%
44 44. 44.LEMONS 60
0.4%
45 45. 45.MANDARINS 0
0%
46 46. 46.MANGOS 550
3.9%
47 47. 47.ORANGES 69
0.5%
48 48. 48.PAPAYA 187
1.3%
49 49. 49.PINAPPLES 2
0%
50 50. 50.CITRON 3
0%
51 51. 51.BEERROOT 33
0.2%
52 52. 52.CABBAGE 37
0.3%
53 53. 53.CARROT 30
0.2%
54 54. 54.CAULIFLOWER 8
0.1%
55 55. 55.GARLIC 135
0.9%
56 56. 56.KALE 523
3.7%
57 57. 57.LETTUCE 10
0.1%
58 58. 58.ONION 80
0.6%
59 59. 59.GREENPEPPER 121
0.8%
60 60. 60.POTATOES 118
0.8%
61 61. 61.PUMPKINS 191
1.3%
62 62. 62.SWEETPOTATO 184
1.3%
63 63. 63.TOMATOES 18
0.1%
64 64. 64.GODERE 416
2.9%
65 65. 65.GUAVA 78
0.5%
66 66. 66.PEACH 4
0%
67 67. 67.MUSTARD 0
0%
68 68. 68.FETO 0
0%
69 69. 69.SPINACH 10
0.1%
70 70. 70.GREEN BEANS 0
0%
71 71. 71.CHAT 904
6.3%
72 72. 72.COFFEE 1102
7.7%
73 73. 73.COTTON 4
0%
74 74. 74.ENSET 879
6.2%
75 75. 75.GESHO 238
1.7%
76 76. 76.SUGARCANE 175
1.2%
77 77. 77.TEA 0
0%
78 78. 78.TOBACCO 15
0.1%
79 79. 79.CORIANDER 19
0.1%
80 80. 80.SACREDBASIL 40
0.3%
81 81. 81.RUE 49
0.3%
82 82. 82.GISHITA 31
0.2%
83 83. 83.WATERMELON 1
0%
84 84. 84.AVOCADOS 406
2.9%
85 85. 85.GRAZINGLAND 0
0%
98 98. 98.OTHER ROOT CROP 68
0.5%
99 99. 99.OTHER LAND USE 4
0%
108 108. 108.AMBOSHIKA 0
0%
110 110. 110.GIRAMTA 0
0%
112 112. 112.KAZMIR 38
0.3%
113 113. 113.STRAWBERRY 1
0%
114 114. 114.SHIFERAW 39
0.3%
115 115. 115.OTHER FRUITS 17
0.1%
116 116. 116.TIMIZ KIMEM 1
0%
117 117. 117.OTHER SPICES 12
0.1%
118 118. 118.OTHER PULSES 2
0%
119 119. 119.OTHER OILS EED 2
0%
120 120. 120.OTHER CEREAL 3
0%
123 123. 123.OTHER VEGETABLE 48
0.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
The World Bank Working for a World Free of Poverty
  • IBRD IDA IFC MIGA ICSID

© The World Bank Group, All Rights Reserved.

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.