The World Bank Working for a World Free of Poverty Microdata Library
  • Data Catalog
  • About
  • Collections
  • Citations
  • Terms of use
  • Login
    Login
    Home / Central Data Catalog / DIME / MWI_2023-2024_SSRLPIE-BL_V01_M
dime

Impact Evaluation of the Social Support for Resilient Households Project 2023-2024
Baseline

Malawi, 2023 - 2024
Get Microdata
Reference ID
MWI_2023-2024_SSRLPIE-BL_v01_M
Producer(s)
Emily Beam, Benedetta Lerva
Collection(s)
Development Impact Evaluation (DIME)
Metadata
Documentation in PDF DDI/XML JSON
Created on
Nov 07, 2024
Last modified
Nov 07, 2024
Page views
45956
Downloads
2763
  • Study Description
  • Data Description
  • Documentation
  • Get Microdata
  • Data files
  • sslrp_baseline.dta
  • hh_roster.dta
  • demographics.dta
  • migration.dta
  • education_roster.dta
  • health_roster.dta
  • asset_list.dta
  • labour_roster.dta
  • agricultural_season.dta
  • agr_act_hhmbr.dta
  • livestock.dta
  • lvtk_product_sales.dta
  • livestock_raising_member.dta
  • nfe_roster.dta
  • nfe_purch_assets.dta
  • nfe_sold_assets.dta
  • nfe_hh_roster.dta
  • oth_income.dta
  • food_consumption.dta
  • nonfood_consumption_week.dta
  • nonfood_consumption_month.dta
  • nonfood_consumption_three_month.dta
  • nonfood_consumption_year.dta
  • food_security.dta
  • saving_account.dta
  • financial_vlsa.dta
  • outstanding_loans.dta
  • financial_loan.dta
  • financial_insurance.dta
  • perm_crops.dta
  • seasonal_crops.dta
  • seasonal_lab_agr_act.dta
  • sslrp_baseline_e2.dta
  • hh_roster.dta
  • demographics.dta
  • migration.dta
  • education_roster.dta
  • health_roster.dta
  • asset_list.dta
  • labour_roster.dta
  • perm_crops.dta
  • seasonal_crops.dta
  • agricultural_season.dta
  • seasonal_lab_agr_act.dta
  • agr_act_hhmbr.dta
  • livestock.dta
  • lvtk_product_sales.dta
  • livestock_raising_member.dta
  • nfe_roster.dta
  • nfe_purch_assets.dta
  • nfe_sold_assets.dta
  • nfe_hh_roster.dta
  • oth_income.dta
  • food_consumption.dta
  • nonfood_consumption_week.dta
  • nonfood_consumption_month.dta
  • nonfood_consumption_three_month.dta
  • nonfood_consumption_year.dta
  • food_security.dta
  • saving_account.dta
  • financial_vlsa.dta
  • outstanding_loans.dta
  • financial_loan.dta
  • financial_insurance.dta

Data file: sslrp_baseline_e2.dta

Experiment 2 - Household level data

Cases: 640
Variables: 904

Variables

othinc_sct
G.2 What type of social cash transfer does your household receive?
othinc_sct_oth
G.2.oth Please specify
othinc_sct_freq
G.3 How often do you receive social cash transfers?
inc_oth_count
Other income source count
oth_inc_roster_count
Roster count for each other income source
setofoth_inc_roster
SET-OF-oth_inc_roster
modg_support
G.5 Did the key person need support from another person to complete the other-in
modg_respondents
G.6 Please select all the household members who supported the key person in answ
cons_food_none
Food cons: None
cons_food_item
H.1 In the last 7 days, did the members of this household eat/drink any of the f
cons_food_item_101
Maize ufa mgaiwa, refined, or madeya (normal, fine or bran flour)
cons_food_item_104
Maize grain (not as ufa)
cons_food_item_105
Green maize
cons_food_item_106
Rice
cons_food_item_107
Finger millet (mawere)
cons_food_item_108
Sorghum (mapira)
cons_food_item_109
Pearl millet (mchewere)
cons_food_item_110
Wheat flour
cons_food_item_111
Bread
cons_food_item_112
Buns, scones
cons_food_item_113
Biscuits
cons_food_item_114
Spaghetti, macaroni, pasta
cons_food_item_115
Breakfast cereal
cons_food_item_116
Infant feeding cereals
cons_food_item_117
Other cereals, grains and cereal products, specify
cons_food_item_201
Cassava tubers
cons_food_item_202
Cassava flour
cons_food_item_203
White sweet potato
cons_food_item_204
Orange sweet potato
cons_food_item_205
Irish potato
cons_food_item_206
Potato crips
cons_food_item_207
Plantain, cooking banana
cons_food_item_208
Cocoyam (masimbi)
cons_food_item_209
Other roots, tubers and plantains, specify
cons_food_item_301
Bean, white
cons_food_item_302
Bean, brown
cons_food_item_303
Pigeonpea (nandolo)
cons_food_item_304
Groundnut (Shelled)
cons_food_item_305
Groundnut - dried (Unshelled)
cons_food_item_306
Groundnut - fresh (Unshelled)
cons_food_item_307
Groundnut flour
cons_food_item_308
Soyabean flour
cons_food_item_309
Ground bean (nzama)
cons_food_item_310
Cowpea (khobwe)
cons_food_item_311
Macademia nuts
cons_food_item_312
Other nuts and pulses, specify
cons_food_item_402
Cabbage
cons_food_item_403
Tanaposi /Rape
cons_food_item_404
Nkhwani
cons_food_item_407
Gathered wild green leaves
cons_food_item_408
Tomato
cons_food_item_410
Pumpkin
cons_food_item_411
Okra / Therere
cons_food_item_414
Other vegetables, specify
cons_food_item_501
Eggs
cons_food_item_502
Dried fish
cons_food_item_503
Fresh fish
cons_food_item_504
Beef
cons_food_item_505
Goat
cons_food_item_506
Pork
cons_food_item_507
Mutton
cons_food_item_508
Chicken
cons_food_item_510
Small animal – rabbit, mice, etc.
cons_food_item_511
Termites, other insects (eg Ngumbi,
cons_food_item_512
caterpillar)
cons_food_item_516
Other meat, fish and animal, specify
cons_food_item_601
Mango
cons_food_item_602
Banana
cons_food_item_604
Pineapple
cons_food_item_605
Papaya
cons_food_item_606
Guava
cons_food_item_607
Avocado
cons_food_item_608
Wild fruit (masau, malambe, etc.)
cons_food_item_609
Apple
cons_food_item_610
Other fruits, specify
cons_food_item_801
Maize-boiled or roasted from vendors
cons_food_item_802
Chips from vendors
cons_food_item_803
Cassava boiled from vendors
cons_food_item_804
Boiled eggs from vendors
cons_food_item_805
Meat from vendors
cons_food_item_808
Mandazi, doughnut or samosa from vendor
cons_food_item_806
Boiled sweet potatoes
cons_food_item_816
Zikondamoyo / Nkate
cons_food_item_817
KALONGONDA (Mucuna)
cons_food_item_818
Other cooked food from vendors, specify
cons_food_item_701
Fresh milk
cons_food_item_703
Margarine - Blue band
cons_food_item_705
Chambiko - soured milk
cons_food_item_709
Other milk and milk products, specify
v594
Sugar
v595
Sugar Cane
v596
Cooking oil
v597
Other sugar, fats and oil, specify
cons_food_item_901
Tea
cons_food_item_906
Freezes (flavoured ice)
cons_food_item_907
Soft drinks (Coca-cola, Fanta, Sprite, etc.)
cons_food_item_908
Chibuku(commercial traditional-style beer)
cons_food_item_910
Maheu
cons_food_item_912
Thobwa
cons_food_item_913
Traditional beer (masese )
cons_food_item_915
Locally brewed liquor (kachasu )
cons_food_item_916
Other beverages, specify
cons_food_item_811
Spices
v608
Sweets
v609
Honey
v610
Other spices and miscellaneous, specify
cons_cereal_oth
H.1.a Please specify other cereals, grains and cereal products
cons_veg_oth
H.1.e Please specify other vegetables
cons_meat_oth
H.1.f Please specify other meat, fish and animal
cons_fruit_oth
H.1.g Please specify other fruits
cons_milk_oth
H.1.i Please specify other milk and milk products
cons_sugar_oth
H.1.j Please specify other sugar, fats and oil
cons_bev_oth
H.1.k Please specify other beverages
cons_spice_oth
H.1.l Please specify other spices and miscellaneous
cons_count
Calculate nb of food items consumed, last 7 days
cons_food_roster_count
Count for the food roster
setofcons_food_roster
SET-OF-cons_food_roster
cons_nf_week_none
Nf cons: None
cons_nf_item_week
H.5 In the last 7 days, has your household consumed or bought any of these items
cons_nf_item_week_1
Charcoal
cons_nf_item_week_2
Paraffin or kerosene
cons_nf_item_week_3
Cigarettes or other tobacco
cons_nf_item_week_4
Candles
cons_nf_item_week_5
Matches
cons_nf_item_week_6
Newspapers or magazines
cons_nf_item_week_7
Public transport - Bicycle Taxi
cons_nf_item_week_8
Public transport - Bus/Minibus
cons_nf_item_week_9
Public transport - Other (Truck, Oxcart, Etc..)
cons_nf_item_week_0
None of the above
cons_nf_week_count
Calculate: number of non-food items last 7 days
cons_nf_week_roster_count
Count for the weekly roster
setofcons_nf_week_roster
SET-OF-cons_nf_week_roster
cons_nf_month_none
Nf cons: None
cons_nf_item_month
H.9 In the last 30 days, has your household consumed or bought any of these item
cons_nf_item_month_1
Mobile data
cons_nf_item_month_2
Milling fees for grain (DO NOT RECORD GRAIN CONSUMPTION)
cons_nf_item_month_3
Bar soap (body soap or clothes soap)
cons_nf_item_month_4
Clothes soap (powder, paste)
cons_nf_item_month_5
Toothpaste, toothbrush
cons_nf_item_month_6
Toilet paper
cons_nf_item_month_7
Glycerine, Vaseline, skin creams
cons_nf_item_month_8
Other personal products (shampoo, razor blades, cosmetics, hair products, etc.)
cons_nf_item_month_9
Light bulbs
cons_nf_item_month_10
Postage stamps or other postal fees
cons_nf_item_month_11
Donation - to church, charity, beggar, etc.
cons_nf_item_month_12
Diesel
cons_nf_item_month_13
Petrol
cons_nf_item_month_14
Motor vehicle spare parts and accessories
cons_nf_item_month_15
Bicycle spare parts and accessories
cons_nf_item_month_16
Motor vehicle maintenance and repairs
cons_nf_item_month_17
Bicycle service maintenance and repairs
cons_nf_item_month_18
Wages paid to maids/househelps
cons_nf_item_month_19
Mortgage - regular payment to purchase house
cons_nf_item_month_20
Repairs & maintenance to dwelling
cons_nf_item_month_21
Repairs to household and personal items (radios, watches, etc., excluding batter
cons_nf_item_month_22
Expenditures on pets
cons_nf_item_month_23
Batteries (wireless and cell phones)
cons_nf_item_month_24
Recharging batteries, cell phones
cons_nf_item_month_25
Shoe polish
cons_nf_item_month_26
Hair dressing salons and barber shops
cons_nf_item_month_0
None of the above
cons_nf_month_count
Calculate number of non-food items, last 30 days
cons_nf_month_roster_count
Count for monthly non-food consumption roster
setofcons_nf_month_roster
SET-OF-cons_nf_month_roster
cons_dweeling_value
H.13 In the last 30 days, how much did you spend on dwelling rental?
cons_nf_trim_none
Nf cons: None
cons_nf_item_trim
H.14 In the last 3 months, has your household consumed or bought any of these it
cons_nf_item_trim_1
Infant clothing
cons_nf_item_trim_2
Baby nappies/diapers
cons_nf_item_trim_3
Boy's trousers
cons_nf_item_trim_4
Boy's shirts
cons_nf_item_trim_5
Boy's jackets
cons_nf_item_trim_6
Boy's undergarments
cons_nf_item_trim_7
Boy's other clothing
cons_nf_item_trim_8
Men's trousers
cons_nf_item_trim_9
Men's shirts
cons_nf_item_trim_10
Men's jackets
cons_nf_item_trim_11
Men's undergarments
cons_nf_item_trim_12
Men's other clothing
cons_nf_item_trim_13
Girl's blouse/shirt
cons_nf_item_trim_14
Girl's dress/skirt
cons_nf_item_trim_15
Girl's undergarments
cons_nf_item_trim_16
Girl's other clothing
cons_nf_item_trim_17
Lady's blouse/shirt
cons_nf_item_trim_18
Chitenje cloth
cons_nf_item_trim_19
Lady's dress/skirt
cons_nf_item_trim_20
Lady's undergarments
cons_nf_item_trim_21
Plastic Basin
cons_nf_item_trim_22
Lady's other clothing
cons_nf_item_trim_23
Boy's shoes
cons_nf_item_trim_24
Men's shoes
cons_nf_item_trim_25
Girl's shoes
cons_nf_item_trim_26
Lady's shoes
cons_nf_item_trim_27
Cloth, thread, other sewing material
cons_nf_item_trim_28
Laundry, dry cleaning, tailoring fees
cons_nf_item_trim_29
Bowls, glassware, plates, silverware, etc.
cons_nf_item_trim_30
Cooking utensils (cookpots, stirring spoons and whisks, etc.)
cons_nf_item_trim_31
Cleaning utensils (brooms, brushes, etc.)
cons_nf_item_trim_32
Torch / flashlight
cons_nf_item_trim_33
Umbrella
cons_nf_item_trim_34
Paraffin lamp (hurricane or pressure)
cons_nf_item_trim_35
Stationery items (not for school)
cons_nf_item_trim_36
Books (not for school)
cons_nf_item_trim_37
Music or video cassette or CD/DVD
cons_nf_item_trim_38
Tickets for sports / entertainment events
cons_nf_item_trim_39
House decorations
cons_nf_item_trim_40
Night's lodging in rest house
cons_nf_item_trim_41
Night's lodging in hotel
cons_nf_item_trim_42
Flask
cons_nf_item_trim_0
None
cons_nf_trim_count
Calculate number of non-food items, last 3 months
cons_nf_trim_roster_count
Count for the non-food three month roster
setofcons_nf_trim_roster
SET-OF-cons_nf_trim_roster
cons_nf_year_none
Nf cons: None
cons_nf_item_year
H.18 In the last 12 months, has your household consumed or bought any of these i
cons_nf_item_year_1
Carpet, rugs, drapes, curtains
cons_nf_item_year_2
Linen - towels, sheets, blankets
cons_nf_item_year_3
Mat - sleeping or for dying maize flour
cons_nf_item_year_4
Mosquito net
cons_nf_item_year_5
Mattress
cons_nf_item_year_6
Sports and hobby equipment, musical instruments, toys
cons_nf_item_year_7
Film, film processing, camera
cons_nf_item_year_8
Cement
cons_nf_item_year_9
Paint
cons_nf_item_year_10
Brick
cons_nf_item_year_11
Construction timber
cons_nf_item_year_12
Council rates
cons_nf_item_year_13
Insurance - health (MASM, etc.), auto, home, life
cons_nf_item_year_14
Losses to theft (value of items or cash lost)
cons_nf_item_year_15
Fines or legal fees
cons_nf_item_year_16
Lobola (bridewealth) costs
cons_nf_item_year_17
Funeral costs, household members
cons_nf_item_year_18
Funeral costs, nonhousehold members (relatives, neighbours)
cons_nf_item_year_19
Woodpoles, bamboo
cons_nf_item_year_20
Grass for thatching roof or other use
cons_nf_item_year_0
None of the above
cons_nf_year_count
Calculate number of non-food items consumed, last 12 months
cons_nf_year_roster_count
Count for the year non-food roster
setofcons_nf_year_roster
SET-OF-cons_nf_year_roster
foodsec_group
H.22 Over the last 7 days, did you or others in your household consume any of th
foodsec_group_1
Cereals, Grains and Cereal Products
foodsec_group_2
Roots, Tubers, and Plantains
foodsec_group_3
Pulses, Nuts and seeds
foodsec_group_4
Vegetables
foodsec_group_5
Meat and Animal Products
foodsec_group_6
Fish and seafoods
foodsec_group_7
Eggs
foodsec_group_8
Fruits
foodsec_group_9
Milk/Milk Products
foodsec_group_10
Fats/Oil
foodsec_group_11
Sugar/Sugar Products/Honey
foodsec_group_12
Spices/Condiments
foodsec_count
Calculate: number of food groups consumed, last 7 days
foodsec_roster_count
Food security roster count
setoffoodsec_roster
SET-OF-foodsec_roster
foodsec_fies_worried
H.25 During the last 12 MONTHS, was there a time when you were worried you would
foodsec_fies_unable
H.26 Still thinking about the last 12 MONTHS, was there a time when you were una
foodsec_fies_few
H.27 Still thinking about the last 12 MONTHS, was there a time when you ate only
foodsec_fies_mealskip
H.28 Still thinking about the last 12 MONTHS, was there a time when you had to s
foodsec_fies_less
H.29 Still thinking about the last 12 MONTHS, was there a time when you ate less
foodsec_fies_runout
H.30 Still thinking about the last 12 MONTHS, was there a time when your househo
foodsec_fies_hungry
H.31 Still thinking about the last 12 MONTHS, was there a time when you were hun
foodsec_fies_dayskip
H.32 During the last 12 MONTHS, was there a time when you went without eating fo
foodsec_months
H.33 You mentioned earlier that there was a time when you had to skip a meal bec
foodsec_months_1
January
foodsec_months_2
February
foodsec_months_3
March
foodsec_months_4
April
foodsec_months_5
May
foodsec_months_6
June
foodsec_months_7
July
foodsec_months_8
August
foodsec_months_9
September
foodsec_months_10
October
foodsec_months_11
November
foodsec_months_12
December
modh_support
H.34 ENUMERATOR: Did the key person need support from another person to complete
modh_respondents
H.35. Please select all the household members who supported the key person in an
fin_savings_none
Food cons: None
fin_savings_type
I.1 Does your household have savings in the following place/institution?
fin_savings_type_1
SACCO
fin_savings_type_2
Saving & Loans Group (SLG)
fin_savings_type_3
Cooperative
fin_savings_type_4
Association
fin_savings_type_5
MFI
fin_savings_type_6
Bank
fin_savings_type_7
Employer
fin_savings_type_8
Store owner
fin_savings_type_9
Mobile money
fin_savings_type_10
Friend
fin_savings_type_11
Family member outside the household
fin_savings_type_12
At home (in secret place or box, carried with them in clothes, bag, pocket), etc
fin_savings_type__66
Refused to answer
fin_savings_type_0
None
fin_savings_count
Number of financial savings institutions
saving_account_count
Count for savings account
setofsaving_account
SET-OF-saving_account
fin_vlsa_part
I.10 Does your household currently participate in a VSLA/ROSCA/SLG?
fin_vlsa_count
I.11 How many VSLA/ROSCA/SLG do your household currently participate in?
fin_vlsa_roster_count
Count for finance SLG/VLSA roster
Total: 904
<1234>
Back to Catalog
The World Bank Working for a World Free of Poverty
  • IBRD IDA IFC MIGA ICSID

© The World Bank Group, All Rights Reserved.

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.