KEN_2003_DHS_v01_M
Demographic and Health Survey 2003
Name | Country code |
---|---|
Kenya | KEN |
Demographic and Health Survey (standard) - DHS IV
The 2003 Kenya Demographic and Health Survey (KDHS) is the fourth survey of its kind to be conducted in Kenya, following the 1989 KDHS, 1993 and 1998.
Sample survey data
The 2003 Kenya Demographic and Health Survey covers the following topics:
The 2003 KDHS was the first survey in the Demographic and Health Surveys (DHS) programme to cover the entire country, including North Eastern Province and other northern districts that had been excluded from the prior surveys (Turkana and Samburu in Rift Valley Province and Isiolo, Marsabit, and Moyale in Eastern Province).
All women age 15-49 years who were either usual residents of the households in the sample or visitors present in the household on the night before the survey were eligible to be interviewed in the survey. The survey collected information on demographic and health issues from a sample of women in the reproductive ages (15-49) and from men age 15-54 years in the one-in-two sub-sample of households selected for the male survey.
Name |
---|
Central Bureau of Statistics (CBS) |
Ministry of Health |
National Council for Population and Development. |
Name | Role |
---|---|
ORC Macro | Technical assistance |
Name | Role |
---|---|
Government of Kenya | Funding |
States Agency for International Development | Funding |
United Kingdom Department for International Development | Funding |
United Nations Population Fund | Funding |
Japan International Co-operation Agency | Funding |
United Nations Development Programme | Funding |
United Nations Children’s Fund | Funding |
Centers for Disease Control and Prevention | Funding |
Name | Role |
---|---|
the National AIDS and STIs Control programme (NASCOP) | Technical backstopping |
Centers for Disease Control and Prevention | Technical backstopping |
Kenya Medical Research Institute (KEMRI) | Technical backstopping |
National Council of Population and Development (NCPD). | Technical backstopping |
The sample for the 2003 KDHS covered the population residing in households in the country. A representative probability sample of almost 10,000 households was selected for the KDHS sample. This sample was constructed to allow for separate estimates for key indicators for each of the eight provinces in Kenya, as well as for urban and rural areas separately. Given the difficulties in traveling and interviewing in the sparsely populated and largely nomadic areas in the North Eastern Province, a smaller number of households was selected in this province. Urban areas were oversampled. As a result of these differing sample proportions, the KDHS sample is not self-weighting at the national level; consequently, all tables except those concerning response rates are based on weighted data.
The survey utilised a two-stage sample design. The first stage involved selecting sample points (“clusters”) from a national master sample maintained by CBS (the fourth National Sample Survey and Evaluation Programme [NASSEP IV]). The list of enumeration areas covered in the 1999 population census constituted the frame for the NASSEP IV sample selection and thus for the KDHS sample as well. A total of 400 clusters, 129 urban and 271 rural, were selected from the master frame. The second stage of selection involved the systematic sampling of households from a list of all households that had been prepared for NASSEP IV in 2002. The household listing was updated in May and June 2003 in 50 selected clusters in the largest cities because of the high rate of change in structures and household occupancy in the urban areas.
All women age 15-49 years who were either usual residents of the households in the sample or visitors present in the household on the night before the survey were eligible to be interviewed in the survey. In addition, in every second household selected for the survey, all men age 15-54 years were eligible to be interviewed if they were either permanent residents or visitors present in the household on the night before the survey. All women and men living in the households selected for the Men's Questionnaire and eligible for the individual interview were asked to voluntarily give a few drops of blood for HIV testing.
A total of 9,865 households were selected in the sample, of which 8,889 were occupied and therefore eligible for interviews. The shortfall was largely due to structures that were found to be vacant or destroyed. Of the 8,889 existing households, 8,561 were successfully interviewed, yielding a household response rate of 96 percent.
In the households interviewed in the survey, 8,717 eligible women were identified; interviews were completed with 8,195 of these women, yielding a response rate of 94 percent. With regard to the male survey results, 4,183 eligible men were identified in the subsample of households selected for the male survey, of whom 3,578 were successfully interviewed, yielding a response rate of 86 percent. The response rates are higher in rural areas, as compared with urban areas both for males and females.
The principal reason for nonresponse among both eligible men and women was the failure to find individuals despite repeated visits to the household and even sometimes the work place. The substantially lower response rate for men reflects the more frequent and longer absences of men from the household.
Response rates for the HIV testing component were lower than those for the interviews.
Three questionnaires were used in the survey:a) the Household Questionnaire, b) the Women's Questionnaire and c) the Men's Questionnaire. The contents of these questionnaires were based on model questionnaires developed by the MEASURE DHS+ programme.
In consultation with a broad spectrum of technical institutions, government agencies, and local and international organisations, CBS modified the DHS model questionnaires to reflect relevant issues in population, family planning, HIV/AIDS, and other health issues in Kenya. A number of thematic questionnaire design committees were organised by CBS. Periodic meetings of each of the thematic committees, as well as the final meeting, were also arranged by CBS. The inputs generated in these meetings were used to finalise survey questionnaires. These questionnaires were then translated from English into Kiswahili and 11 other local languages (Embu, Kalenjin, Kamba, Kikuyu, Kisii, Luhya, Luo, Maasai, Meru, Mijikenda, and Somali). The questionnaires were further refined after the pretest and training of the field staff.
a) The Household Questionnaire was used to list all of the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. The Household Questionnaire also collected information on characteristics of the household's dwelling unit, such as the source of water, type of toilet facilities, materials used for the floor and roof of the house, ownership of various durable goods, and ownership and use of mosquito nets. In addition, this questionnaire was used to record height and weight measurements of women age 15-49 years and children under the age of 5 years, households eligible for collection of blood samples, and the respondents' consent to voluntarily give blood samples. The HIV testing procedures are described in detail in the next section.
b) The Women's Questionnaire was used to collect information from all women age 15-49 years and covered the following topics:
The Women's Questionnaire also included a series of questions to obtain information on women's experience of domestic violence. These questions were administered to one woman per household. In households with two or more eligible women, special procedures were followed, which ensured that there was random selection of the woman to be interviewed.
c) The Men's Questionnaire was administered to all men age 15-54 years living in every second household in the sample. The Men's Questionnaire collected similar information contained in the Women's Questionnaire, but was shorter because it did not contain questions on reproductive history, maternal and child health, nutrition, maternal mortality, and domestic violence.
All aspects of the KDHS data collection were pretested in November and December 2002. Thirteen teams (one for each language) were formed, each with one female interviewer, one male interviewer, and one health worker. The 39 team members were trained for two weeks and then proceeded to conduct interviews in the various districts in which their language was spoken. In total, 260 households were covered in the pretest. The lessons learnt from the pretest were used to finalise the survey instruments and logistical arrangements for the survey. The pretest underscored the desirability of inluding voluntary counselling and testing (VCT) for HIV/AIDS as an integral part of the survey, since many respondents during the pretest wanted to know their HIV status.
Start | End |
---|---|
2003-04 | 2003-09 |
Name |
---|
Central Bureau of Statistics (CBS) |
TRAINING
In February and early March 2003, CBS staff responsible for the survey spent considerable effort in recruiting people with the requisite skills to work as field staff. Most of those recruited were university graduates, and many had experience either with a previous KDHS or similar surveys, such as the Behavioural Surveillance Survey or the DHS-type survey that was conducted in Nairobi slum areas by the African Population and Health Research Centre. CBS then organized a three-week training course from March 17 to April 5, 2003, at the Izaak Walton Inn in Embu.
A total of 146 field personnel were trained as interviewers, supervisors, health workers and data processing staff. Because of the large number involved, trainees were divided into three groups and trained separately on questionnaire administration. They came together in plenary sessions for special lectures. Four trainers were assigned to each group. The trainers were officers of CBS and NCPD as well as staff from ORC Macro. In addition to the 12 main trainers, guest lecturers gave presentations in plenary sessions on specialised topics, such as family planning; Kenya's Program on Integrated Management of Childhood Illnesses; nutrition and anthropometric measurements; HIV/AIDS; and Kenya's VCT programme for HIV/AIDS.
All participants were trained on interviewing techniques and the contents of the KDHS questionnaires. The training was conducted following the standard DHS training procedures, including class presentations, mock interviews, and four written tests. All of the participants were trained on how to complete the Women's Questionnaire and how to take anthropometric measurements.
Late in the second week of training, the health workers were split off from the other three groups to form a fourth group. Staff from KEMRI, CDC/Kenya, and ORC Macro trained the health workers on informed consent procedures, taking blood spots for HIV testing, and procedures for minimising risks in handling blood products (“universal precautions”). Meanwhile, the other trainees practiced interviewing in their local languages.
During the final week, the whole group visited households in two sites close to the training center for practical interviews. Towards the end of the training programme, some trainees were selected as supervisors and field editors. This group was further trained on how to supervise fieldwork and editing of the questionnaires in the field.
FIELDWORK
Data collection took place over a five-month period, from April 18 to September 15, 2003. Seventeen interviewing teams were involved in the exercise. Each team consisted of one supervisor, one field editor, four female interviewers, one male interviewer, one health worker, and one driver. The Maasaispeaking team and the two Somali-speaking teams had fewer female interviewers. Five senior staff from CBS coordinated and supervised fieldwork activities. ORC Macro participated in field supervision for interviews, weight and height measurements, and blood sample collection.
To ensure that respondents could learn their HIV status, CDC/Kenya (in collaboration with KEMRI and NASCOP) organised a parallel team of two VCT counselors to work with each of the data collection teams (except in Nairobi, where VCT is accessible through many fixed sites). These mobile VCT teams followed the same protocol applied in fixed VCT sites according to the National Guidelines for Voluntary Counselling and Testing for HIV (Ministry of Health, 2003). This includes discussing the clients' reasons for coming for counselling and testing, their risk factors, and implications of test outcomes, followed by anonymous testing for HIV for those requesting the service. A finger prick was performed to collect several drops of blood for simultaneous (parallel) testing performed with two simple, rapid HIV test kits (Abbott Determine HIV 1/2 and Trinity Biotech Uni-Gold); for quality control, a dried blood spot filter paper was collected on every fifth client for testing in the laboratory. During the 15 minutes while the test was developing, prevention counselling was provided. If the two test results were discrepant, a third test (Instascreen) was performed as a “tiebreaker.” Post-test counselling was then provided.
In the field, the team supervisors and counsellors worked with local officials to locate suitable places within or adjacent to the cluster in which the counsellors could provide VCT services that were accessible and allowed privacy for testing and counselling. The plan was for the two VCT counsellors to “leapfrog” each other, with one staying behind for one or two days after the interviewing team left the area and the other moving ahead of the team to set up services in advance. In practice, this was not always possible because of transport logistics problems.
CDC/Kenya also printed a brochure on HIV/AIDS and VCT for the team's health workers to provide all households and survey respondents. Similarly, numbered vouchers were printed and left with eligible respondents. The vouchers were to be given to the mobile VCT teams or the fixed VCT site when the eligible respondents went for VCT. NASCOP and CDC/Kenya also made arrangements with the few fixed VCT sites charging for services, so that they would provide free services to KDHS clients and send the vouchers back to CDC for reimbursement. Finally, although the VCT teams were to give priority to clients presenting the KDHS vouchers, they also accepted any other clients from the sampled communities. Over 10,600 clients, both respondents and other community members, sought and received free VCT services through the KDHS.
HIV TESTING
In all households selected for the Men's Questionnaire, all eligible women and men who were interviewed were asked to voluntarily provide some drops of blood for HIV testing. The protocol for the blood specimen collection and analysis was based on the anonymous linked protocol developed by the DHS programme and approved by ORC Macro's Institutional Review Board. This protocol was revised and enhanced by KEMRI and CDC. It was reviewed and approved by the Scientific and Ethical Review Committees of KEMRI and by the Institutional Review Board and Director of CDC in Atlanta, Georgia. The protocol allowed for the linking of the HIV results to the sociodemographic data collected in the individual questionnaires, provided that the information that could potentially identify an individual was destroyed before the linking took place. This required that identification codes be deleted from the data file and that the back page of the Household Questionnaire, containing the barcode labels and names of respondents, be destroyed prior to merging the HIV results with the individual data file.
For the purposes of blood sample collection, a health worker was included in each of the 17 field teams. The health workers were recruited with the assistance of the Ministry of Health. To obtain informed consent for taking blood for HIV testing, the health worker explained the procedures, the confidentiality of the data, and the fact that test results could not be traced back to or made available to the subject; the health worker also provided respondents with information about how they could obtain their HIV status through VCT services. If consent was granted, the health worker then collected a dried blood spot (DBS) sample on a filter paper card from a finger prick, using a single-use, spring-loaded, sterile lancet. Each DBS sample was given a barcode label, with a duplicate label attached to the Household Questionnaire on the line showing consent for that respondent. The health worker affixed a third copy of the same barcode label to a Blood Sample Transmittal Form in order to track the blood samples from the field to the laboratory. Filter papers were dried overnight in a plastic drying box, after which the health worker packed them in individual Ziploc bags with desiccant and a humidity indicator card and placed them in a larger Ziploc bag with other blood spots for that particular sample point. Blood samples were periodically collected in the field along with the completed questionnaires and transported to CBS headquarters in Nairobi for logging in, after which they were taken to the CDC laboratory at KEMRI headquarters in Nairobi for HIV testing.
At the laboratory, the DBS samples were each assigned a laboratory number and kept frozen until testing was started in early September. After the samples were allowed to attain room temperature, scissors were used to cut a circle at least 6.3 mm in diameter. The blots were placed in cryo-vials that contained 200 µl of elution buffer and were labeled with the lab number. The vials were left to elute overnight at 4oC, then they were centrifuged at 2,500 rpm for 10 minutes. These eluates were then tested with an Enzygnost Anti-HIV-1/2 Plus enzyme-linked immunosorbent assay (ELISA) test kit (DADE Behring HIV-1/2) for verification purposes. All positive samples and 10 percent of negative samples were then tested with a Vironostika HIV-1 MicroELISA System (Organon Teknika). Finally, 29 discrepant samples were tested by an INN-OLIA HIV confirmation Western blot kit (Innogenetics, Belgium).
The processing of the 2003 KDHS results began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to CBS offices in Nairobi, where they were edited and entered by data processing personnel specially trained for this task. Data were entered using CSPro. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, since CBS was able to advise field teams of errors detected during data entry. The data entry and editing phase of the survey was completed in October 2003.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2003 NDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2003 NDHS is the ISSA Sampling Error Module. This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
The Jackknife repeated replications of the parent sample, and calculates standard errors for these estimates using simple formulae. Each replication considers all but one clusters in the calculation of the estimates. Pseudo-independent replications are thus created. In the 2003 NDHS, there were 362 non-empty clusters. Hence, 361 replications were created.
In addition to the standard error, ISSA computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. ISSA also computes the relative error and confidence limits for the estimates.
Sampling errors for the 2003 NDHS are calculated for selected variables considered to be of primary interest for woman's survey and for man's surveys, respectively. The results are presented in an appendix of the Final Report for the country as a whole, for urban and rural areas, and for each of the 6 regions. For each variable, the type of statistic (mean, proportion, or rate) and the base population are given in Table B.1 of the appendix of the Final Report. Tables B.2 to B.10 present the value of the statistic (R), its standard error (SE), the number of unweighted (N) and weighted (WN) cases, the design effect (DEFT), the relative standard error (SE/R), and the 95 percent confidence limits (R±2SE), for each variable. The DEFT is considered undefined when the standard error considering simple random sample is zero (when the estimate is close to 0 or 1). In the case of the total fertility rate, the number of unweighted cases is not relevant, as there is no known unweighted value for woman-years of exposure to childbearing.
The confidence interval (e.g., as calculated for children ever born to women aged 40-49) can be interpreted as follows: the overall average from the national sample is 6.808 and its standard error is 0.134. Therefore, to obtain the 95 percent confidence limits, one adds and subtracts twice the standard error to the sample estimate, i.e., 6.808±2×0.134. There is a high probability (95 percent) that the true average number of children ever born to all women aged 40 to 49 is between 6.540 and 7.077.
Sampling errors are analyzed for the national woman sample and for two separate groups of estimates: (1) means and proportions, and (2) complex demographic rates. The relative standard errors (SE/R) for the means and proportions range between 1.1 percent and 32.7 percent with an average of 6.36 percent; the highest relative standard errors are for estimates of very low values (e.g., currently using female sterilization). If estimates of very low values (less than 10 percent) were removed, then the average drops to 4.2 percent. So in general, the relative standard error for most estimates for the country as a whole is small, except for estimates of very small proportions. The relative standard error for the total fertility rate is small, 2.5 percent. However, for the mortality rates, the average relative standard error is much higher, 6.04 percent.
There are differentials in the relative standard error for the estimates of sub-populations. For example, for the variable want no more children, the relative standard errors as a percent of the estimated mean for the whole country, and for the urban areas are 4.9 percent and 6.1 percent, respectively.
For the total sample, the value of the design effect (DEFT), averaged over all variables, is 1.78 which means that, due to multi-stage clustering of the sample, the average standard error is increased by a factor of 1.78 over that in an equivalent simple random sample.
Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2003 Kenya Demographic and Health Survey (NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Name | Affiliation | URL | |
---|---|---|---|
MEASURE DHS | ICF International | www.measuredhs.com | archive@measuredhs.com |
Use of the dataset must be acknowledged using a citation which would include:
The user of the data acknowledges that the original collector of the data, the authorized distributor of the data, and the relevant funding agency bear no responsibility for use of the data or for interpretations or inferences based upon such uses.
Name | URL | |
---|---|---|
General Inquiries | info@measuredhs.com | www.measuredhs.com |
Data and Data Related Resources | archive@measuredhs.com | www.measuredhs.com |
DDI_KEN_2003_DHS_v01_M
Name | Role |
---|---|
World Bank, Development Economics Data Group | Generation of DDI documentation |
2012-03-22
This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.