FIN_2003_WHS_v01_M
World Health Survey 2003
Name | Country code |
---|---|
Finland | FIN |
World Health Survey [hh/whs]
WHO has developed and implemented a Survey Programme and a World Health Survey to compile comprehensive baseline information on the health of populations and on the outcomes associated with the investment in health systems; baseline evidence on the way health systems are currently functioning; and, ability to monitor inputs, functions, and outcomes.
The Survey Programme was developed in individual countries through consultation with policy-makers and in collaboration with the people involved in routine HIS. It was complementary to their efforts, to ensure periodic data input in a cost-effective way so that important gaps in health information are covered. It also established a baseline for efforts to scale-up health activities.
The World Health Survey has been completed in 70 countries and the data sets have been cleaned and weighted and prepared for analysis by country teams. The majority of the data sets are ready and have been distributed to the partners in the countries with the basic tabulations and discussions are in progress to interpret the results. Many countries have produced a country report.
Sample survey data [ssd]
Households and individuals
2002
Topic | Vocabulary |
---|---|
World Health Survey (WHS) | Survey |
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Name |
---|
World Health Organization (WHO) |
Name |
---|
World Health Organization |
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which increases sample variance and effectively reduces our estimating power. WHO requires an absolute maximum of 50 respondents per PSU, and ideally would suggest 20-30. This means that for a sample size of 5000 respondents, 100- 200 PSU clusters should be taken into the sample. Calculating that, roughly, one fifth of the total number of PSU clusters in a country will be randomly selected into the survey sample, the sampling frame should consist of 500-1000 PSU clusters.
PROBABILITY SAMPLING
Probability sampling means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. Non-probability methods of sampling such as quota or convenience sampling and random walk, may introduce bias into the survey, will throw survey findings into question, and are not accepted by WHO.
The probability of selection into the survey sample for each cluster will be proportional to its relative size. Systematic Sampling Systematic sampling is the ordered sampling at fixed intervals from a list, starting from a randomly chosen point. Typically, systematic sampling is not used at the first stage of sampling (selection of PSUs) because it renders the estimation of sampling error difficult.
Systematic sampling is recommended at the SSU, TSU, and household selection stages of sampling. Systematic sampling may be linear or circular.
SELECTION OF HOUSEHOLDS
The Household is a device used to get at the individual. The household is the sampling unit while the individual is the observational unit. While it would be preferable to randomly select from a list of all eligible persons in a country, such lists, with a few exceptions, are not available, so we must employ a final cluster, the household, to get at our observational units.
Households will be selected from lists of dwelling units. Non-probabilistic methods of household selection such as the random walk are not acceptable. Such lists are typically available from population registries, household listings, voter lists and census list. As it is essential to include all households in the sampling frame, an assessment of the methodology employed to select households must be made:
QUALITY
Almost all lists will suffer from routine problems. WHO recommends that survey institutions manually enumerate all the households in the sampling units randomly selected into the survey sample. If existing lists or registries will be used, then a detailed analysis of their quality must be made and they must be updated to ensure that there is no exclusion of households from the survey sampling frame.
SELECTION OF INDIVIDUALS FROM HOUSEHOLD ROSTER
All members of each household selected into the survey sample will be enumerated on the household roster. A member of the household is defined as someone who usually stays in the household, sleeps and shares meals, who has that address as primary place of residence, or who spends more than 6 months a year living there. Country-specific variations in this standard definition are allowed in consultation with WHO.
KISH TABLES
The respondent for the survey will be selected among all eligible members of the household using Kish tables. Kish tables provide a method by which each eligible person in a household has an equal probability of selection into the survey sample. It is extremely important for the representativeness of the survey sample and the integrity of the survey that the Kish tables are properly implemented. All interviews where the Kish selection method is not properly implemented will be rejected. The Kish technique allows adequate representation for all the persons in the household.
The proper and complete enumeration and description of the entire household is a critical component of the survey process. The household roster must be completed for all households selected randomly into the survey sample, whether they agreed to participate in the survey or not. It is only in this way that we can collect the basic information required to estimate the non-response bias in the survey.
The requirement of augmenting the survey sample size to adjust for estimated non-response is necessary to ensure that we have adequate persons in the sample to have the power to make precise estimates. This does not, however, account for the bias that is created by non-response, since non-responders are often different from responders with respect to key variables that are linked to the domains under study in the survey. All effort, therefore, must be made to minimise non-response, and to interview as many people in the survey sample as possible. A detailed discussion of refusal conversion methods, survey awareness raising, and call-backs is found in the WHS Survey Manual.
There are two possible scenarios of non-response:
The demographic and other information collected in the household roster and requested from sites serves to calculate the denominators for statistical analysis of the survey data; without the information in the household roster, we would not be able to determine the health-related outcome rates in your country.
Countries has provided WHO with the population sizes, probabilities of selection and sampling weights of all sampling units for each stage of the sampling process Since clusters are often of unequal size, sampling weights are necessary to be able to reconstruct population estimates from our sample estimates.
The weights essentially describe the number of persons in the sampling frame represented by each person in the cluster (i.e. each person in County 1 represents 12.5 people, each person in County 2 represents 9.1 persons etc.). Weights for SSUs, TSUs, etc. are calculated in the same way. The probability of selection of the elementary unit, the household, is not proportional to the number of people in the household. Rather, the household level weights will be generated at the time of respondent selection within the household. The number of households selected within each chosen sampling unit will be proportional to the total number of households in that sampling unit. All households in each unit will have equal probability of selection.
Start | End |
---|---|
2003 | 2003 |
FIELD SUPERVISION
The role of the supervisor is to monitor the progress and quality of the data collection, and ensure that interviewers are performing work. This includes handling the logistics of the survey, coordinating with other staff, recruiting and training additional interviewers, and supervision.
Supervision must be given to interviewers before, during, and after the interview. Supervisors must not only check that contact procedures are followed correctly but that interviews are conducted appropriately. They should be present for 10 interviews and ensure that standardized interviewing techniques are observed when asking questions, clarifying, probing and giving feedback in a non-directive manner. After the interview has been conducted, they must also check that data is coded and entered correctly. Supervisors must give feedback and debrief on a regular basis, in order to update the organization responsible for the study on the progress of the survey and any problems that have arisen.
Participation in the survey is voluntary and the respondent can refuse to be interviewed. The interviewer is responsible for explaining what the survey is about, providing all the necessary information, and making sure the respondent understands the implications of his / her participation before giving his / her consent. The information given should be simple and clear and adapted to the respondent's level of understanding.
Consents must be documented by asking the respondents to sign an Informed Consent Forms ( Household Informant Consent Form; Individual Consent Form) before doing the interview. These forms must mention who will be doing the study, the types of questions that will be asked, why the study is being done, and who will have access to the information provided. The interviewer must check that the respondent has read and understood the form before signing, and should offer to go over it with him /her emphasizing the different items mentioned. If the respondent is illiterate or unable to read for himself / herself (e.g. due to a visual impairment), the form will be read and explained to him / her. In cases where it is not appropriate for the respondent to sign the form, the interviewer alone will sign the form.
In cases where the respondent is being dissuaded from, or coerced into, participating in the study by a third party such as a spouse, relative or any other member in the community, the interviewer should make it clear that it is the respondent alone who must decide whether or not s/he wishes to be interviewed.
Name | |
---|---|
World Health Organization (WHO) | sagesurvey@who.int |
The user of the data undertakes to carry out work on the data of the WHO surveys, in accordance with the following conditions:
(1) He/she undertakes to keep confidential any information concerning individual persons or households.
(2) He/she undertakes not to distribute the data to any other user.
(3) He/she undertakes to use the data for scientific research only.
The undersigned will provide a reference of all publications based on the data to the WHO co-ordination team and will include the following acknowledgement: "This paper uses data from the WHO World Health Surveys / Multi-Country Survey Study (as appropriate)."
See also the citation requirement.
Citation requirement is the way that the dataset should be referenced when cited in any publication. This will guarantee that the data producer gets proper credit, and that analytical results can be linked to the proper version of the dataset.
The citation should include at least the primary investigator, the name and abbreviation of the dataset, the reference year, and the version number (and website address and date of download when the dataset was obtained on-line).
The user of the data acknowledges that the original collector of the data, the authorized distributor of the data, and the relevant funding agency bear no responsibility for use of the data or for interpretations or inferences based upon such uses.
Name | Affiliation | URL | |
---|---|---|---|
Multi-Country Studies, Measurement and Health Information Systems | World Health Organization(WHO) | sagesurvey@who.int | http://www.who.int |
DDI_FIN_2003_WHS_v01_M
2012-01-24
Version 01 (January 2012)
This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.