KEN_2011_MICS-NP_v01_M
Multiple Indicator Cluster Survey 2011
Nyanza Province
Name | Country code |
---|---|
Kenya | KEN |
Multiple Indicator Cluster Survey - Round 4 [hh/mics-4]
The Multiple Indicator Cluster Survey (MICS) 2011 was conducted to provide comprehensive and disaggregated data to fill the existing gap, particularly at the county level. The survey was the first of its kind to be conducted at the devolved level. MICS was a follow-up to the MICS 2008 conducted in 13 districts in Eastern Province and the 2009 Mombasa Informal Settlement Survey.
Sample survey data [ssd]
The scope of the Multiple Indicator Cluster Survey includes:
HOUSEHOLD INFORMATION PANEL
WOMEN'S INFORMATION PANEL
UNDER-FIVE CHILD INFORMATION PANEL
National
The survey covered all de jure household members (usual residents), all women aged between 15-49 years and all children under 5 living in the household.
Name |
---|
Kenya National Bureau of Statistics |
United Nations Children’s Fund |
Name | Role |
---|---|
United Nations Children’s Fund | Financial and technical support |
The sample for the Nyanza Province Multiple Indicator Cluster Survey (MICS) was designed to provide estimates for a large number of indicators on the situation of children and women at the provincial level, for urban and rural areas, and for counties: Siaya, Migori, Kisumu, Homa Bay, Kisii, and Nyamira. The urban and rural areas within each County were identified as the main sampling strata and the sample was selected in two stages. The primary sampling units (PSUs) for the survey were the recently created enumeration areas (EAs) based on the 2009 Kenya Population and Housing Census while the households were the ultimate sampling units.
A stand-alone statistical frame for each of the Nyanza counties based on the 2009 census EAs was created for the purpose of MICS. Within each stratum, a specified number of census enumeration areas were selected systematically with probability proportional to size. A complete listing of all households in the selected EAs was undertaken by identifying and mapping all existing structures and households. The listing process ensured that the EAs had one measure of size (MOs). One MOs was defined as an EA having an average of 100 households. EA with less than 50 households was amalgamated with the most convenient adjoining EA. On the other hand, the EAs with more than 149 households were segmented during household listing and eventually one segment scientifically selected and developed into a cluster. After a household listing exercise within the selected enumeration areas, a systematic sample of 25 households was drawn from each of the sampled enumeration area. The sample was stratified by County, urban and rural areas, and is not self-weighting. For reporting provincial level results, sample weights are used. A more detailed description of the sample design can be found in Appendix A.
Of the 7,500 households selected for the sample 6,994 were found to be occupied. Of these 6,828 were successfully interviewed for a household response rate of 97.6 percent. In the interviewed households 6,581 women (age 15-49 years) were identified. Of these 5,908 were successfully interviewed, yielding a response rate of 89.8 percent within interviewed households. In addition 5,157 children under age five were listed in the household questionnaire. Questionnaires were completed for 5,045 of these children, which corresponds to a response rate of 97.8 percent within interviewed households. Overall response rates of 87.6 percent and 95.5 percent are calculated for the women's and under-5's interviews respectively.
There are some differences in the response rates by urban and rural areas. Overall household responses rates were 98 percent for rural areas and 94 percent for urban areas. The same trends was observed for overall women response rates and under-five overall response rates, in favor of rural areas. At the County levels, household response rates were all above 95 percent, but differences were observed for women response rates across counties.
Overall women response rates were lowest in Nyamira County at 84 percent and highest in Siaya at 95 percent. Given the fact that Nyamira has response rates below 85 percent, the results for this region or residence should be interpreted with some caution, as the response rate is low. Similarly overall under-five response rates were highest in Siaya County and lowest in Nyamira County. The reasons for the lower response rates for Nyamira County are not readily available, but a range of explanations for this lower performance include that a large section of the population who were not reachable on certain prayer days, in addition, heavy downpours affected availability of respondents during the whole day while working on farms.
The Nyanza province Multiple Indicator Cluster Survey sample is not self-weighting. Essentially by allocating equal numbers of households to each of the regions, different sampling fractions were used in each region since the size of the regions varied. For this reason, sample weights were calculated and these were used in the subsequent analyses of the survey data. The major component of the weight is the reciprocal of the sampling fraction employed in selecting the number of sample households in that particular sampling stratum (h) and PSU (i): The term fhi, the sampling fraction for the i-th sample PSU in the h-th stratum, is the product of probabilities of selection at every stage in each sampling stratum: where pshi is the probability of selection of the sampling unit at stage s for the i-th sample PSU in the h-th sampling stratum.
Since the estimated number of households in each enumeration area (PSU) in the sampling frame used for the first stage selection and the updated number of households in the enumeration area from the listing were different, individual sampling fractions for households in each sample enumeration area (cluster) were calculated. The sampling fractions for households in each enumeration area (cluster) therefore included the first stage probability of selection of the enumeration area in that particular sampling stratum and the second stage probability of selection of a household in the sample enumeration area (cluster).
A second component in the calculation of sample weights takes into account the level of non-response for the household and individual interviews. The adjustment for household non-response is equal to the inverse value of: RRh = Number of interviewed households in stratum h/ Number of occupied households listed in stratum h. After the completion of fieldwork, response rates were calculated for each sampling stratum. These were used to adjust the sample weights calculated for each cluster. Response rates in the Nyanza province Multiple Indicator Cluster Survey are shown in Table HH.1 in this report. Similarly, the adjustment for non-response at the individual level (women and under-5 children) for each stratum is equal to the inverse value of: RRh = Completed women's (or under-5) questionnaires in stratum h / Eligible women (or under-5s) in stratum h. The non-response adjustment factors for women's and under-5's questionnaires are applied to the adjusted household weights. Numbers of eligible women and under-5 children were obtained from the roster of household members in the Household Questionnaire for households where interviews were completed.
Three sets of questionnaires were used in the survey:
Start | End |
---|---|
2011-10-01 | 2011-12-01 |
Name |
---|
Kenya National Bureau of Statistics |
The teams were led by a Supervisor, overseen by the District Statistical Officer (DSO) on a daily basis, who also attended the 4 days training program. The county team was led by a county coordinator who was in charge of managing all the quality assurance activities of the teams in each County. One team was given two days to list an EA. The whole exercise of listing was also monitored by the UNICEF independent team that included a consultant.
Data were entered using the CSPro software. The data were entered into microcomputers by 23 data entry operators and 4 data entry supervisors. In order to ensure quality control, all questionnaires were double entered and internal consistency checks were performed. Procedures and standard programs developed under the global MICS4 program and adapted to the Nyanza Province questionnaire were used throughout. Data processing began three weeks after commencing data collection in October 2011 and was completed in January 2012.Data were analyzed using the Statistical Package for Social Sciences (SPSS) software program, Version 18, and the model syntax and tabulation plans developed by UNICEF were used for this purpose.
Sampling errors are a measure of the variability between the estimates from all possible samples. The extent of variability is not known exactly, but can be estimated statistically from the survey data.The sample of respondents selected in the Nyanza province Multiple Indicator Cluster Survey is only one of the samples that could have been selected from the same population, using the same design and size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected.
The following sampling error measures are presented in this appendix for each of the selected indicators:
For the calculation of sampling errors from MICS data, SPSS Version 18 Complex Samples module has been used. The results are shown in the tables that follow. In addition to the sampling error measures described above, the tables also include weighted and unweighted counts of denominators for each indicator.
Sampling errors are calculated for indicators of primary interest, for the national level, for the regions, and for urban and rural areas. Three of the selected indicators are based on households, 8 are based on household members, 13 are based on women, and 15 are based on children under 5. All indicators presented here are in the form of proportions. Tables SE.1 to SE.9 show the list of indicators for which sampling errors were calculated for each indicator and for several domains i.e. whole province, urban areas, rural areas and the six counties.
Name |
---|
United Nations Children's Fund |
Name | Affiliation | URL | |
---|---|---|---|
MICS Program Manager | UNICEF | http://mics.unicef.org/ | mics@unicef.org |
Is signing of a confidentiality declaration required? | Confidentiality declaration text |
---|---|
yes | Users of the data agree to keep confidential all data contained in these datasets and to make no attempt to identify, trace or contact any individual whose data is included in these datasets. |
Survey datasets are distributed at no cost for legitimate research, with the condition that we receive a description of the objectives of any research project that will be using the data prior to authorizing their distribution.
Use of the dataset must be acknowledged using a citation which would include:
Example:
United Nations Children's Fund, Kenya National Bureau of Statistics. Kenya Multiple Indicator Cluster Survey (MICS) 2011, Ref. KEN_2011_MICS_v01_M. Dataset downloaded from [url] on [date].
The user of the data acknowledges that the original collector of the data, the authorized distributor of the data, and the relevant funding agency bear no responsibility for use of the data or for interpretations or inferences based upon such uses.
Name | Affiliation | URL | |
---|---|---|---|
MICS Program Manager | UNICEF | mics@unicef.org | http://mics.unicef.org/ |
DDI_KEN_2011_MICS-NP_v01_M_WB
Name | Affiliation | Role |
---|---|---|
Development Data Group | The World Bank | Documentation of the DDI |
2016-07-07
v01 (July 2016)
This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here.